Researchers Identify Molecular Cascade That Drives Sprouting In Brain After Stroke

University of California - Los Angeles

A stroke wreaks havoc in the brain, destroying its cells and the connections between them. Depending on its severity and location, a stroke can impact someone's life forever, affecting motor activity, speech, memories, and more.

The brain makes an attempt to rally by itself, sprouting a few new connections, called axons, that reconnect some areas of the brain. But the process is weak, and the older the brain, the poorer the repair. Still, understanding the cascade of molecular events that drive even this weak attempt could lead to developing drugs to boost and accelerate this healing process.

Now researchers at UCLA have achieved a promising first step. Reporting in the current online edition of the journal Nature Neuroscience, senior author Dr. S. Thomas Carmichael, a UCLA associate professor of neurology, and colleagues have, for the first time, identified in the mouse the molecular cascade that drives the process of reconnection or sprouting in the adult brain after stroke.

"We set out to learn three things," said Carmichael, a member of the UCLA Stroke Center and the Brain Research Institute. "We hoped to identify the molecular program that activates brain cells - neurons - to form new connections after stroke; to understand how this molecular program changes in the aged versus the young adult brain, and the role each specific molecule plays in this program to control the sprouting of new connections after stroke."

Read Full Story...

 

All active news articles

Get Involved

National Stroke Association’s mission is to reduce the incidence and impact of stroke by developing compelling education and programs focused on prevention, treatment, rehabilitation and support for all impacted by stroke.